Abstract

The escalating volume and sophistication of cyber threats underscore the critical
need for advanced Network Intrusion Detection Systems (NIDSs). Cybersecurity
analysts, however, frequently experience “alert fatigue” due to the sheer number of
alerts, highlighting a gap between current NIDS capabilities and practical operational
needs. Recent advancements in Large Language Models (LLMs) present a potential
avenue for enhancing NIDS efficacy. This thesis investigates the effectiveness of
general-purpose LLMs in the multi-class classification of network traffic flows.

To address this, our methodology involved extending a state-of-the-art three-stage
NIDS pipeline with a fourth stage powered by LLMs. We systematically evaluated
three LLM families (DeepSeek-R1, Gemma-3, Qwen2.5-Coder) across various model
sizes (1B to 32B parameters) using the CIC-IDS2017 dataset. The investigation en-
compassed three distinct input data representations (raw, statistically contextualized,
and summarized-contextualized), five advanced prompting strategies (including few-
shot, Chain-of-Thought, and Tree-of-Thought), and Low-Rank Adaptation (LoRA)
fine-tuning. Weighted F}-score and balanced accuracy served as primary performance
metrics to evaluate the performance on the unbalanced testing data, that results
from passing through the baseline NIDS stages.

The findings indicate that the evaluated general-purpose LLMs, within the imple-
mented framework, are not currently suitable for replacing or significantly enhancing
established machine learning techniques for direct network flow classification. The
LLM-augmented system did not achieve performance comparable to the baseline
state-of-the-art NIDS and exhibited poor classification capability, often near random
chance. Critical reliability issues, such as malformatted outputs and single-class
prediction biases, were prevalent and were not overcome by variations in model
scale, input representation, prompting, or fine-tuning. This outcome, while negative,
provides a valuable scientific contribution by highlighting current limitations and
guiding future research. It suggests a fundamental misalignment between current
general-purpose LLMs and the task of low-level network flow data classification.
Future efforts should prioritize exploring hybrid architectures, where LLMs support
Natural Language Processing (NLP)-centric auxiliary tasks in cybersecurity, or focus
on developing novel data representations and LLM adaptation techniques more
attuned to numerical data.
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1 Introduction

Network Intrusions are an all too common occurrence in the corporate world today
with cybercrime growing rapidly. Between 2024 and 2029, global cybercrime costs
are expected to rise by $6.4 trillion, an increase of 69.41% [42]. A first step to combat
this rise in crime is to detect attacks as early as possible. By advancing the research
into new tools and techniques for Network Intrusion Detection System (NIDS), we
can lower false positive rates and increase the automation of the detection of attacks,
while reducing the need for human intervention.

While current research solutions exhibit high accuracy, in practice many cyberse-
curity analysts are struggling to keep up with the volume of alerts, completing only
about half of their expected daily workload [17]. This divide between research and
practice might have two causes: either the classification performance of the current
State-of-the-Art (SOTA) models is not high enough, especially in a multi-class setting
with highly unbalanced data, or the tools do not convey the necessary information
to the analysts effectively. Thus, increasing either the effectiveness of current models
or the usability of the available tools could help to bridge this gap.

With the global adoption of Large Language Models (LLMs) for a variety of
tasks it comes as no surprise that LLMs have already been used in cybersecurity,
as seen in tools like Microsoft Copilot for Security'. LLMs can process alert data
in natural language, providing human-readable summaries and contextual threat
intelligence. This can reduce the time analysts spend researching each alert, thus
directly alleviating alert fatigue and streamlining the triage process. However, to
the best of our knowledge, there are no well-evaluated open-source solutions that
test the effectiveness of LLMs in the context of Network Intrusion Detection, even
though research in the broader area of LLMs in cybersecurity is beginning to gain
momentum [6, 25, 31]. Interest in decoder-only LLMs for security, for example, has
exploded (92 papers by 2024 [102]), yet their efficacy on flow-based NIDS remains
largely untested. More generally, the efficacy of LLMs in processing and reasoning
over primarily numerical and tabular data is largely untested. Unlike unstructured
log messages where LLMs excel, flow records are predominantly composed of numeric
features with no inherent linguistic semantics, making their interpretation by LLMs
an open challenge.

This research investigated the first steps in developing an open-source LLM-based
IDS for Security Operations Centers (SOCs), by taking a closer look at the effective-
ness of LLMs in the context of NIDS. Through a comprehensive implementation

Thttps://www.microsoft.com/security/business/ai-machine-learning/microsoft-copil
ot-security, accessed July 9, 2025
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and evaluation, this thesis tested the effectiveness of LLMs in Network Intrusion
Detection, ultimately supporting them to better combat the ever-evolving cyber
threats, including novel, unknown attacks. This study is significant because even
a negative result regarding LLMs’s direct applicability to raw numerical flow data
provides a valuable scientific contribution by highlighting limitations and guiding
future research towards hybrid approaches or more suitable data representations.

NIDS-related Security Operations Center Challenges. Today’s security analysts
in SOCs are increasingly confronted with the challenge of discerning legitimate
threats from a deluge of false positives generated by automated alert systems [17],
while more sophisticated attacks can go unnoticed [27].

This situation, often termed “alert fatigue”, not only demands a significant portion
of their time but also contributes to professional burnout [3], given that many IDS
alerts stem from benign activities flagged as threats [85]. A more detailed review
of these challenges, including the nuanced distinction between “false alarms” and
“benign triggers” [3], is provided in Chapter 2. The core issue remains the need for
more effective tools and processes to support analysts.

Large Language Model Opportunities. LLMs have shown unprecedented success
across diverse fields [56], primarily due to the transformer architecture [91], which
excels in capturing complex patterns and long-range dependencies in sequential data.
While their application to natural language is well-established, their potential for
structured, numerical data, such as network flows, is an active area of investigation.
The ability of transformers to detect subtle and complex patterns, without extensive
domain-specific feature engineering [48], is crucial for enhancing NIDS performance
against sophisticated attacks. For instance, LLMs have shown promise in security-
centric tasks like log parsing [62, 86].

If we can effectively incorporate structured numerical information into LLM-based
systems while preserving the natural language interface, we may unlock powerful
synergies and alleviate the burdens placed on security analysts by enabling them to
integrate their prior knowledge into predictive models through natural language. On
one side of the spectrum, rule-based or classical Machine Learning (ML) approaches
are often explainable but rigid. On the other, LLMs are highly flexible and capable
of processing large volumes of data, yet potentially unreliable or opaque in their
reasoning. By combining these paradigms, it becomes possible to leverage both the
interpretability of traditional methods and the usability and scalability of LLMs.
Motivated by this interplay between interpretability, usability, and computational
capacity, we see the need for a thorough investigation of the current state of the
predictive capabilities of LLMs on intrusion detection data.
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1.1 Objectives

The primary focus of this study was to support security analysts in distinguishing
between real threats and false alarms. This study tests whether LLM-enhanced
systems can classify malicious network traffic at least as well as a state-of-the-art
multistage IDS. To evaluate this, the study compared the efficacy of LLM-based
classification with the current state of the art in NIDS. The findings of this study
are expected to contribute to the ongoing discourse on the role of Al in enhancing
cybersecurity practices and provide practical insights for SOCs. In summary, the
research addresses the following research questions:

RQ1 Are LLMs effective for classifying malicious network traffic?

(a) Do LLMs improve classification performance compared to a
multi-stage SOTA baseline model?

(b) Do LLMs perform better than random guessing in classifying
malicious network traffic?

To rigorously test these questions, the following null hypotheses were formulated:

1.

Hy : Privips < Phoaseline
2,

Hi : Priv-ips < Prandom

where P denotes the classification performance.

The practical results that test our hypotheses enable us to also discuss the more
general question if LLMs can add value for security analysts in the identification and
response to cyber threats.

1.2 Methodology Overview

This section provides a high-level overview of our methodological approach. For
a detailed account of the experimental design, dataset usage, model adaptation
procedures, and evaluation strategy, please refer to Section 4.1.

Our methodology involves extending the three-stage intrusion detection pipeline
by Verkerken et al. [92] with a novel fourth stage powered by LLMs. Within this
new stage, we systematically explore the impact of various LLM configurations,
including different model families and sizes, diverse input data representations (raw,
contextualized, and context-summarized), and multiple adaptation techniques such
as advanced prompting strategies and Low-Rank Adaptation (LoRA) fine-tuning.
We evaluate this methodology using the CIC-IDS2017 dataset, employing a hold-out
test set of 59,435 flows. After these flows are processed through the initial three
stages of the pipeline, an average of about 500 samples remain for evaluation by the
LLM-based Stage 4. Weighted F}-score and balanced accuracy serve as our primary
performance metrics. Figure 1 provides an overview of the proposed multi-stage
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Figure 1: Overview of our proposed multi-stage IDS with LLM integration. The first
three stages are the same as in the work by Verkerken et al. [92]. Test
samples classified with certainty A that pass the baseline threshold 7 are
passed to the LLM for final classification.

IDS with LLM integration, with Listing 1 providing an example of a prompt used to
classify a network flow.

[[ ## flow_parameters ## ]]
6, 8686549, 2, 0, 12, 0, 6, 6, ...

LLM Output

[[ ## Label ## 1]
(D)DOS

[[ ## completed ## 1]

Listing 1: Abbreviated prompt example that demonstrates one method of our overall
approach in letting an LLM classify network traffic. We omitted System
Message, Reasoning and further details for brevity.



L]

We tested three different LLM families (with single model sizes ranging from
1B to 32B parameters) (i) deepseek-r1 (ii) gemma3 (iii) qwen2.5-coder on
three different input representations (i) raw (comma-separated values) (ii) ctx
(statistically contextualized values) (iii) sumctx (summarized contextualized values)
with five different prompting paradigms (i) - (no improvement) (ii) inst (automatic
instruction tuning) (iii) 6 (six-shot prompting) (iv) CoT-6 (six-shot Chain-of-Thought
(CoT) prompting) (v) ToT-V (Tree-of-Thought prompting with five experts).

In summary, this thesis makes the following primary contributions:

¢ The first evaluation of three LLM families on flow-level intrusion detection
classification.

« A systematic comparison of three distinct input representations, five prompting
paradigms, and the impact of LoRA fine-tuning for this task.

1.3 Thesis Structure

This thesis is organized to provide a comprehensive and critical analysis of the
application of LLMs in network intrusion detection.

Chapter 2 presents an exhaustive review of the relevant literature, tracing the
evolution of IDSs, the integration of deep learning and transformer-based models
in cybersecurity, and the emerging role of LLMs for both textual and numerical
predictive tasks.

Chapter 3 revisits foundational concepts in cybersecurity and LLMs, including
network security architecture, key protocols, types of network attacks, and the core
principles underlying modern language models.

Chapter 4 details the methodology and implementation of the proposed LLM-
augmented IDS. It describes the experimental setup, the integration of LLMs into a
multi-stage detection pipeline, the design of input representations and prompting
strategies, and the evaluation framework. The chapter concludes with a thorough
performance analysis of various LLM configurations and adaptation techniques.

Chapter 5 provides a critical discussion and interpretation of the experimental
results. It analyzes the classification performance of LLM-based systems, examines
the impact of model variants, input formats, and prompt engineering, and addresses
the research questions posed at the outset. The broader implications for both
practical cybersecurity operations and future research are also discussed.

Chapter 6 summarizes the key findings of the thesis, highlighting the main conclu-
sions regarding the suitability of LLMs for flow-based intrusion detection.

The appendices, Appendix A, Appendix B, and Appendix C, provide supplementary
material. Appendix A contains further details on experimental configurations,
datasets, and prompt examples. Appendix B presents comprehensive results and
performance metrics for all evaluated model configurations. Appendix C documents
illustrative examples of Al assistance in the writing process.



